Quick Start Guide¶
This guide will help you get started with Augini quickly using a practical example.
Installation¶
Basic Configuration¶
Configure Augini using environment variables or a configuration file:
from augini.config import AuginiConfig
# Using environment variables
config = AuginiConfig.from_env()
# Or using a YAML file
config = AuginiConfig.from_file('config.yaml')
Example config.yaml
:
Practical Example¶
Let's walk through a complete example using a sample customer dataset:
from augini import DataEngineer, DataAnalyzer
import pandas as pd
# Create a sample customer dataset
data = pd.DataFrame({
'customer_id': range(1, 6),
'age': [25, 35, 45, 28, 52],
'income': [30000, 45000, 75000, 35000, 85000],
'purchase_amount': [150, 450, 850, 250, 950],
'location': ['NY', 'CA', 'TX', 'FL', 'WA']
})
# Initialize Augini components
engineer = DataEngineer(api_key='your-api-key')
analyzer = DataAnalyzer(api_key='your-api-key')
# Step 1: Generate new features using DataEngineer
engineered_data = engineer.generate_feature(
df=data,
new_feature_name='customer_segment',
new_feature_description="Create customer segments based on age, income, and purchase_amount",
output_type='category'
)
print("Generated Features:")
print(engineered_data[['customer_id', 'customer_segment']])
# Step 2: Analyze the data using DataAnalyzer
analyzer.fit(engineered_data) # Prepare the analyzer with our data
insights = analyzer.chat(
"What are the key characteristics of each customer segment? "
"Focus on average age, income, and purchase amounts."
)
print("\nSegment Analysis:")
print(insights)
# Step 3: Ask follow-up questions
follow_up = analyzer.chat(
"Which segment shows the highest potential for growth?",
use_memory=True # Use context from previous question
)
print("\nFollow-up Analysis:")
print(follow_up)
This example demonstrates: 1. Creating a sample dataset 2. Using DataEngineer to add customer segmentation 3. Using DataAnalyzer to understand segments through natural language 4. Asking follow-up questions with context memory
Common Operations¶
Feature Generation¶
# Generate a single feature
feature_data = engineer.generate_feature(
df=data,
new_feature_name='risk_score',
new_feature_description="Generate risk score based on customer behavior",
output_type='float'
)
# Generate multiple features
features_data = engineer.generate_features(
df=data,
features=[
{
'new_feature_name': 'lifetime_value',
'new_feature_description': "Predict customer lifetime value",
'output_type': 'float'
},
{
'new_feature_name': 'churn_risk',
'new_feature_description': "Assess customer churn risk",
'output_type': 'category'
}
]
)
Interactive Analysis¶
# First prepare the analyzer
analyzer.fit(data)
# Ask questions about your data
basic_insights = analyzer.chat(
"What are the main patterns in purchase behavior?"
)
# Ask follow-up questions
detailed_insights = analyzer.chat(
"How do these patterns vary by age group?",
use_memory=True
)
For more detailed information about each component, check the API documentation: - DataEngineer API - DataAnalyzer API - Chat Interface
For more detailed information, check the API Reference or Advanced Topics.